Face Factor
Factor implements the functionalities of each factors to generate and verify Private IDs .
This section covers how to use the Biometric Factor for generating and verifying Private IDs.
class cryptonets_python_sdk.factor.FaceFactor(*args, **kwargs)
The FaceFactor class implements the methods for enrolling and predicting the Face module as part of the Biometric Authentication.
It exposes five methods as part of the interface:
- is_valid: Verifies the face of the user.
- estimate_age: Predicts the age of the face.
- compare: Compare two faces for verification.
- enroll: Enrolls the face of the user.
- predict: Predicts the face of the user.
- delete: Deletes the user from the system
Parameters:
- Name
api_key
- Type
- str
- Description
The API key for using the FaceFactor server.
- Name
server_url
- Type
- str
- Description
The URL of the FaceFactor server.
- Name
local_storage_path
- Type
- str(optional)
- Description
Absolute path to the local storage.
- Name
logging_level
- Type
- LoggingLevel (Optional)
- Description
LoggingLevel needed while performing operation
- Name
tf_num_thread
- Type
- int (Optional)
- Description
Number of thread to use for Tensorflow model inference
- Name
cache_type
- Type
- CacheType (Optional)
- Description
To set the cache on / off
- Name
config
- Type
- ConfigObject (Optional)
- Description
Configuration class object with parameters
Methods
Method | Description |
---|---|
is_valid([image_path, image_data, config]) | Check if the image is valid for using in the face recognition |
is_valid([image_path, image_data, config]) | Check if the image is valid for using in the face recognition |
estimate_age([image_path, image_data, config]) | Check if the image is valid and returns the age of the image |
compare([image_path_1, image_path_2, ...]) | Check if the images are of same person or not |
enroll([image_path, image_data, config]) | Enrolls the image in the face recognition server |
predict([image_path, image_data, config]) | Predicts the image in the face recognition server |
get_iso_face([image_path, image_data, config]) | Takes the face image and gives back the image in ISO Spec format |
Delete
Returns:
- Name
FaceFactor
- Description
Instance of the FaceFactor class.
compare(image_path_1: str = None, image_path_2: str = None, image_data_1: array = None, image_data_2: array = None, config: ConfigObject = None) → FaceCompareResult
Check if the images are of same person or not
Parameters
- Name
image_path_1
- Description
Directory path to the first image file
- Name
image_path_2
- Description
Directory path to the second image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data_1
- Type
- Optional
- Description
First Image data in numpy RGB format
- Name
image_data_2
- Type
- Optional
- Description
Second Image data in numpy RGB format
Returns
FaceCompareResult
status: int [0 if same, 1 if different, -1 if unsuccessful]
message: str [Message from the operation]
result: str
distance_min: str
distance_mean: str
distance_max: str
first_validation_result: str
second_validation_result: str
Enroll
enroll(image_path: str = None, image_data: array = None, config: ConfigObject = None) → FaceEnrollPredictResult
Parameters
- Name
image_path
- Description
Directory path to the first image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data
- Type
- Optional
- Description
Image data in numpy RGB format
Returns
FaceEnrollPredictResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
enroll_level: str
guid: str
puid: str
token: str
Estimate Age
estimate_age(image_path: str = None, image_data: array = None, config: ConfigObject = None) → FaceValidationResult
Check if the image is valid and returns the age of the image
Parameters
- Name
image_path
- Description
Directory path to the first image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data
- Type
- Optional
- Description
Image data in numpy RGB format
Returns
FaceValidationResult
error: int [0 if successful -1 if any error]
message: str [Message from the operation]
face_objects: List[FaceObjectResult]
Face ISO
get_iso_face(image_path: str = None, image_data: array = None, config: ConfigObject = None) → ISOFaceResult
Takes the face image and gives back the image in ISO Spec format
Parameters
- Name
image_path
- Description
Directory path to the first image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data
- Type
- Optional
- Description
Image data in numpy RGB format
Returns
ISOFaceResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
image: PIL.Image
confidence: float
iso_image_width: str
iso_image_height: str
iso_image_channels: str
Is Valid
is_valid(image_path: str = None, image_data: array = None, config: ConfigObject = None) → FaceValidationResult
Check if the image is valid for using in the face recognition
Parameters
- Name
image_path
- Description
Directory path to the first image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data
- Type
- Optional
- Description
Image data in numpy RGB format
Returns
FaceValidationResult
error: int [0 if successful -1 if any error]
message: str [Message from the operation]
face_objects: List[FaceObjectResult]
Predict
predict(image_path: str = None, image_data: array = None, config: ConfigObject = None) → FaceEnrollPredictResult | List[FaceEnrollPredictResult]
Predicts the image in the face recognition server
Parameters
- Name
image_path
- Description
Directory path to the first image file
- Name
config
- Type
- Optional
- Description
Additional configuration parameters for the operation
- Name
image_data
- Type
- Optional
- Description
Image data in numpy RGB format
Returns
FaceEnrollPredictResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
enroll_level: str
guid: str
puid: str
token: str